

[image: PyPI] [https://pypi.org/project/vireoSNP] [image: Docs] [https://vireoSNP.readthedocs.io] [image: Build Status] [https://travis-ci.org/single-cell-genetics/vireo] [image: DOI] [https://zenodo.org/badge/latestdoi/187803798]

Home

About Vireo

This documentation gives an introduction and usage manual of Vireo (Variational
inference for reconstructing ensemble origins), a Bayesian method to demultiplex
pooled scRNA-seq data with or without genotype reference.

Vireo is primarily designed for demultiplexing cells into donors by modelling of
expressed alleles. It supports a variety of settings of donor genotype (from
entirely missing, to partially missing, to fully observed). See more details in
manual [https://vireosnp.readthedocs.io/en/latest/manual.html] section.

As a general cell clustering methods by allelic ratio (equivalent to genotyping),
Vireo is applicable for more settings besides donor demultiplexing, including
reconstruction of somatic clones, see vireoSNP_clones.ipynb [https://nbviewer.jupyter.org/github/single-cell-genetics/vireo/blob/master/examples/vireoSNP_clones.ipynb] for example on
mitochondral mutations.

Notebooks for interactive analysis

Here are some notebooks for interactive analysis. Usually, you only need to use
the command line to perform donor deconvolution, but you may refer to some of
these notebooks for additional analysis.

donors: vireoSNP_donors.ipynb [https://nbviewer.jupyter.org/github/single-cell-genetics/vireo/blob/master/examples/vireoSNP_donors.ipynb] gives example on donor deconvolution
manually. The vireo command line does this job automatically.

donors: donor_match.ipynb [https://nbviewer.jupyter.org/github/single-cell-genetics/vireo/blob/master/examples/donor_match.ipynb] gives example on aligning donors to other
omics data or other batches

clones: vireoSNP_clones.ipynb [https://nbviewer.jupyter.org/github/single-cell-genetics/vireo/blob/master/examples/vireoSNP_clones.ipynb] gives example on clone reconstruction on
mitochondral mutations

Quick Resources

Latest version on GitHub
https://github.com/single-cell-genetics/vireo

Scripts for simulation
https://github.com/single-cell-genetics/vireo/tree/master/simulate

All releases
https://pypi.org/project/vireoSNP/#history

Issue reports

If you find any error or suspicious bug, we will appreciate your report.
Please write them in the github issues:
https://github.com/single-cell-genetics/vireo/issues

References

Yuanhua Huang, Davis J. McCarthy, and Oliver Stegle. Vireo: Bayesian
demultiplexing of pooled single-cell RNA-seq data without genotype reference [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1865-2].
Genome Biology 20, 273 (2019)

Installation

Required packages in python: numpy>=1.9.0, scipy>=1.0, matplotlib

Environment: we only tested Vireo in Python 3 environment, so if it
fails in Python 2, please try it in Python 3 before reporting the issue.

We recommend using Anaconda [http://continuum.io/downloads] distribute to set up the environment. It not only
includes all dependent packages, but also provides a user controlled
environment, namely, you will have the root permission for this distribution,
including installation of any package.

Easy install from PyPI

You can install Vireo simply via PyPI [https://pypi.org/project/vireoSNP] in terminal (suggested), or upgrade
by adding --upgrade as follows:

pip install vireoSNP

pip install --upgrade --no-deps vireoSNP

Install from source code

Alternatively, you can download the source code from GitHub [https://github.com/huangyh09/vireo] (for the
latest version) and run python setup in terminal:

wget https://github.com/huangyh09/vireo/archive/master.zip
unzip master.zip
cd vireo-master

python setup.py install

You can also use the following shortcut

pip install -U git+https://github.com/single-cell-genetics/vireo

In any case, if had the permission error for installation as you are not root,
add --user.

Quick check

In order to test the installation, you could type vireo in terminal. If
successfully installed, you will see the following output.

Welcome to vireoSNP v0.1.1!

use -h or --help for help on argument.

If installation is sucessful, but can’t run it (e.g., message below), then
check whether the directory which contains the executable binary file is added
to PATH environment.

vireo: command not found

If using Anaconda, the executable vireo is located in
$anaconda3/bin/vireo.
If not using Anaconda, it is usually located in directory ~/.local/bin. You
could add the path into PATH environment variable, by write the following line
into .profile or .bashrc file.

export PATH="~/.local/bin:$PATH"

Manual

Demultiplexing requires two count matrices (variant-by-cell) of reads or UMIs
for each variant in each cell: AD for alternative allele and DP depth
(i.e., summary of alternative and reference alleles). These two matrices can be
obtained by genotyping a list of variants in each cell. We provide a guideline
for cellular genotyping [https://vireoSNP.readthedocs.io/en/latest/genotype.html] with a recommendation of cellSNP-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] that is also
developed by us.

Once the genotypes for each cell have been obtained, e.g., in VCF format, or two
sparse matrices AD and DP, we can apply Vireo for demultiplexing.

Demultiplexing for donors

By default, Vireo works without any known genotype information for pooled
samples. However, if any of genotype of these samples are known or can be
obtained, e.g., by bulk RNA-seq, exome-seq, it is still useful to add them, not
only allowing us to align the deconvoluted samples to its identity, but also can
benefits the doublets identification, especially if the coverage or the loaded
cells per sample is low.

Depending the availability of genotype information, we provide four strategies
to demultiplex scRNA-seq data.

	without any genotype:

vireo -c $CELL_DATA -N $n_donor -o $OUT_DIR

	with genotype for all samples (genoTag: GT, GP, or PL; default is PL, please
choose the existing one)

vireo -c $CELL_DATA -d $DONOR_GT_FILE -o $OUT_DIR

Optionally, -N can be provided if it is samller than that in DONOR_GT_FILE
for finding the relevant subset of donors.

Note

For efficient loading of donor VCF file, we recommend subset it
bcftools view donor.vcf.gz -R cellSNP.cells.vcf.gz -Oz -o sub.vcf.gz

You can also add -s or -S for subsetting samples.

Make sure you only keep informative SNPs, e.g., by filtering out SNPs
with too much missing values or the gentoypes too similar across donors.

	with genotype for part of the samples (n_donor is larger than that in
DONOR_GT_FILE)

vireo -c $CELL_DATA -d $DONOR_GT_FILE -o $OUT_DIR -N $n_donor

	with genotype but not confident (or only for subset of SNPs)

vireo -c $CELL_DATA -d $DONOR_GT_FILE -o $OUT_DIR --forceLearnGT

Formats of cell data

Viroe supports the cell data in three formats:

	a cellSNP output folder containing VCF for variants info and sparse matrices
AD and DP

	Vartrix outputs with three or four files: alt.mtx,ref.mtx,barcodes.tsv[,SNP.vcf.gz]

	standard VCF file with variants by cells

Vireo full arguments

Type vireo -h for details of all arguments:

Usage: vireo [options]

Options:
-h, --help show this help message and exit
-c CELL_DATA, --cellData=CELL_DATA
 The cell genotype file in VCF format or cellSNP folder
 with sparse matrices.
-N N_DONOR, --nDonor=N_DONOR
 Number of donors to demultiplex; can be larger than
 provided in donor_file
-o OUT_DIR, --outDir=OUT_DIR
 Dirtectory for output files [default:
 $cellFilePath/vireo]

Optional input files:
 --vartrixData=VARTRIX_DATA
 The cell genotype files in vartrix outputs (three/four
 files, comma separated):
 alt.mtx,ref.mtx,barcodes.tsv,SNPs.vcf.gz. This will
 suppress cellData argument.
 -d DONOR_FILE, --donorFile=DONOR_FILE
 The donor genotype file in VCF format. Please filter
 the sample and region with bcftools -s and -R first!
 -t GENO_TAG, --genoTag=GENO_TAG
 The tag for donor genotype: GT, GP, PL [default: PL]

Optional arguments:
 --noDoublet If use, not checking doublets.
 -M N_INIT, --nInit=N_INIT
 Number of random initializations, when GT needs to
 learn [default: 50]
 --extraDonor=N_EXTRA_DONOR
 Number of extra donor in pre-cluster, when GT needs to
 learn [default: 0]
 --extraDonorMode=EXTRA_DONOR_MODE
 Method for searching from extra donors. size: n_cell
 per donor; distance: GT distance between donors
 [default: distance]
 --forceLearnGT If use, treat donor GT as prior only.
 --ASEmode If use, turn on SNP specific allelic ratio.
 --noPlot If use, turn off plotting GT distance.
 --randSeed=RAND_SEED
 Seed for random initialization [default: none]
 --cellRange=CELL_RANGE
 Range of cells to process, eg. 0-10000 [default: all]
 --callAmbientRNAs If use, detect ambient RNAs in each cell (under
 development)
 -p NPROC, --nproc=NPROC
 Number of subprocesses for computing - this sacrifices
 memory for speedups [default: 1]

Discriminatory variants

Given a set of variants for which estimated genotypes are available, the Vireo
software implements a heuristic to define a minimal and informative set of
discriminatory variants. This set of variants can be used to perform qPCR-based
genotyping or for other targeted genoytping methods. Briefly, this algorithm
prioritises variants with largest information gain in splitting samples.

For any donor genotype file in VCF format, especially the output from Vireo,
GT_donors.vireo.vcf.gz, the GTbarcode function can be used to generate
the minimal set of discriminatory variants by the following command line:

GTbarcode -i $dir/GT_donors.vireo.vcf.gz -o $dir/GT_barcodes.tsv --randSeed 1

By default, this function filters out variants with <20 UMIs or >0.05 reads
aligned other alleles except the annotated reference and alternative alleles.
In case the variants with homozygous alternative alleles are not wanted, the
arguments --noHomoAlt can be used. By default, this GTbarcode function
will also generate a figure for the identified genotype barcode, as following
(based on example data in the repo),

[image: identified discriminatory variants]

Example data

In order to test vireo and illustrate the usage, we provide a test data set [https://github.com/huangyh09/vireo/tree/master/data],
also some demo scripts [https://github.com/huangyh09/vireo/blob/master/examples/demo.sh].

This example data set contains 952 cells from 4 samples. The genotypes for these
four samples are also provided.

Genotyping

Genotyping (or piling up) a list of common variants on each cell is a pre-step
for demultiplexing them with Vireo. This step requires some bioinformatics
efforts, but thanks to many developers in this community, there are a few
good existing software to use.

Genotyping cells can be divided into the following two sub-steps, and in
different situations, the strategy may need to be customised for ensuring
high quality genotyping data to demultiplex cells.

Recommended strategies for genotyping cells:

	For human or genotyped species: variant list [https://sourceforge.net/projects/cellsnp/files/SNPlist/] (given) + cellsnp-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] (typing).

	For species without known common variants: cellsnp-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] (calling with mode 2b
& typing with mode 1a). freebayes [https://github.com/ekg/freebayes] is an alternative to cellsnp-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] mode 2b
for calling of heterozygous SNPs.

Note

cellSNP [https://github.com/single-cell-genetics/cellSNP] was initially developed in Python based on pysam, which is
convenient for a few thousand cells but becomes the computational bottleneck
for large number of cells. Therefore, we have re-implemented it to
cellsnp-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] in C/C++ with ~5x faster and ~50x less memory.

1. Identify candidate SNPs

There are multiple ways to identify candidate SNPs, each has unique properties
and may suit situations or species differently. Here, we listed two common
strategies.

Option 1): using a common variants

The best way is to genotype the each of the pooled samples either by genotyping
array or exome/genome/RNA sequencing (or other omics data), and use this list of
distinguish variants to as candidate to genotype each cell. However, this can
be costly, and not necessary in most cases.

For human, a very comprehensive list of common variants have been identified
by international efforts, e.g., 10000 genome project [http://www.internationalgenome.org/] and gnomAD [https://gnomad.broadinstitute.org/] which gives
a few millions common SNPs to genotype on each cell. The benefits include the
reduced confounders, e.g., caused by RNA editing. We normally recommend this if
for human, and we provide some pre-processed SNP list [https://sourceforge.net/projects/cellsnp/files/SNPlist/].

Note

Here are some tips if you have genotypes for input donors:

	Imputation can be helpfule if you obtained genotypes for each human
individual from SNP-array or Whole exome-seq.

	Selection of informative SNPs is useful for filtering out SNPs with
identical or very similar genotypes in all mixed donors. You may consider
AC, AF or similar tag in you donor VCF file. bcftools [http://samtools.github.io/bcftools/bcftools.html] is a very
useful tool for such preprocessing.

Option 2): Calling variants from scRNA-seq

Other than human, most species may not have a well-defined common variants,
hence the best way is to call the variants from pooled scRNA-seq directly.

The package freebayes [https://github.com/ekg/freebayes] is an often choice, which designed to find small
polymorphisms, specifically SNPs, indels, MNPs, and complex events smaller than
the length of a short-read sequencing alignment. Importantly, freebayes [https://github.com/ekg/freebayes] has
a set of options to filter reads and variants.

We also recommend an alternative method cellsnp-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] that is developed by us.
Its mode 2b has a similar feature to pileup the whole genome and identify the
heterozygous variants in the pooled samples. It has highly comparable
accuracry to freebayes [https://github.com/ekg/freebayes] and bcftools mpileup [http://www.htslib.org/doc/bcftools.html] and achieves 5-10x speedups.

2. Genotype each cell

Once a list of candidate variants are found, it is more straightforward to
genotype each cell. We provide three common methods, with recommendation to
our cellsnp-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] to seamlessly with Vireo.

	The famous mpileup [http://www.htslib.org/doc/bcftools.html] from bcftools / samtools is often a good choice. However,
this can be slow, as it doesn’t allow parallel computing and it doesn’t
support the cell barcodes and UMI tag in the pooled BAM file for many cells.

	This limitation motivates us to develop cellSNP [https://github.com/single-cell-genetics/cellSNP], a pysam wrap (now
cellsnp-lite [https://cellsnp-lite.readthedocs.io/en/latest/manual.html] in C/C++) to pile up the
variants in each cell. The benefits include parallel computing, taking cell
barcoding tag and support UMIs.

	Alternatively, vartrix [https://github.com/10XGenomics/vartrix] is also an option to genotype cells in 10x Genomics
data.

Once the genotype (mainly pileup) has been achieved, it can be used to
demultiplex the pooled cells, see the manual [https://vireosnp.readthedocs.io/en/latest/manual.html].

API

Import vireoSNP as:

import vireoSNP

Commands

	vireo: see manual [https://vireosnp.readthedocs.io/en/latest/manual.html]

	GTbarcode: see manual [https://vireosnp.readthedocs.io/en/latest/manual.html]

Read / Load

	
vireoSNP.read_cellSNP(dir_name, layers=['AD', 'DP'])

	Read data from the cellSNP output directory

	Parameters

	dir_name – directory full path name for cellSNP output

	Returns

	

	Return type

	A disctionary containing AD, DP, cells and variants

	
vireoSNP.read_vartrix(alt_mtx, ref_mtx, cell_file, vcf_file=None)

	Read data from VarTrix

	Parameters

	
	alt_mtx – sparse matrix file for alternative alleles

	ref_mtx – sparse matrix file for reference alleles

	cell_file – file for cell barcodes, each per line

	vcf_file – the vcf file used for fetch variants in VarTrix

	Returns

	

	Return type

	A disctionary containing AD, DP, cells and optionally variants

VCF processing

Load VCF to matrices

	
vireoSNP.vcf.load_VCF(vcf_file, biallelic_only=False, load_sample=True, sparse=True, format_list=None)

	Initially designed to load VCF from cellSNP output, requiring

	all variants have the same format list;

	a line starting with “#CHROM”, with sample ids.

If these two requirements are satisfied, this function also supports general
VCF files, e.g., genotype for multiple samples.

Note, it may take a large memory, please filter the VCF with bcftools first.

Examples

	Load VCF file, e.g., from cellsnp-lite output:

>>> import vireoSNP
>>> import numpy as np
>>> vcf_dat = vireoSNP.vcf.load_VCF("cellSNP.cells.vcf.gz", sparse=False,
>>> biallelic_only=False, format_list=['GT', 'AD', 'DP', 'ALL'])
>>> var_ids = np.array(vcf_dat['variants'])
>>> samples = np.array(vcf_dat['samples'])
>>> GT_mat = np.array(vcf_dat['GenoINFO']['GT'])
>>> AD_mat = np.array(vcf_dat['GenoINFO']['AD']).astype(float)
>>> DP_mat = np.array(vcf_dat['GenoINFO']['DP']).astype(float)
>>> ALL_bases_mat = np.array(vcf_dat['GenoINFO']['ALL'])

Parse genotype probablity to tenseor

	
vireoSNP.vcf.parse_donor_GPb(GT_dat, tag='GT', min_prob=0.0)

	Parse the donor genotype probability
tag: GT, GP, or PL

Examples

>>> GProb_tensor = vireoSNP.vcf.parse_donor_GPb(vcf_dat['GenoINFO']['GT'], 'GT')

	
vireoSNP.vcf.match_VCF_samples(VCF_file1, VCF_file2, GT_tag1, GT_tag2)

	Match donors in two VCF files. Please subset the VCF with bcftools first,
as it is more computationally efficient:

bcftools view large_file.vcf.gz -R small_file.vcf.gz -Oz -o sub.vcf.gz

	Parameters

	
	VCF_file1 (str) – the full path of first VCF file, in plain text or gzip / bgzip

	VCF_file2 (str) – the full path of second VCF file, in plain text or gzip / bgzip

	GT_tag1 (str) – the tag for extracting the genotype probability in VCF1: GT, GP, PL

	GT_tag2 (str) – the tag for extracting the genotype probability in VCF2: GT, GP, PL

Plotting

Heatmap plot

	
vireoSNP.plot.heat_matrix(X, yticks=None, xticks=None, rotation=45, cmap='BuGn', alpha=0.6, display_value=True, row_sort=False, aspect='auto', interpolation='none', **kwargs)

	Plot heatmap of distance matrix

	Parameters

	
	X (numpy.array or matrix) – The matrix to plot in heatmap

	yticks (list) – The ticks ids for y axis

	xticks (list) – The ticks ids for x axis

	ratation (scalar) – The ratation angel for xticks

	cmap (str) – The colormap for the heatmap, more options:
https://matplotlib.org/stable/tutorials/colors/colormaps.html

	alpha (scalar) – The transparency, value between 0 and 1

	display_value (bool) – If True, dispaly the values in the heatmap

	raw_sort (bool) – If True, sort the rows with row index as
row_idx = np.argsort(np.dot(X, 2**np.arange(X.shape[1])))

	aspect (str) – aspect in plt.imshow

	interpolation (str) – interpolation in plt.imshow

	**kwargs (keywords & values) – **kwargs for plt.imshow

	Returns

	

	Return type

	The return from plt.imshow

Examples

>>> from vireoSNP.plot import heat_matrix
>>> import numpy as np
>>> np.random.seed(1)
>>> X = np.random.rand(5, 7)
>>> heat_matrix(X)

(Source code, png)

[image: _images/API-1.png]

Annotated heatmap plot

	
vireoSNP.plot.anno_heat(X, row_anno=None, col_anno=None, row_order_ids=None, col_order_ids=None, xticklabels=False, yticklabels=False, row_cluster=False, col_cluster=False, **kwargs)

	Heatmap with column or row annotations. Based on seaborn.clustermap()
Row or column will be ordered by the annotation group.

Note, haven’t tested if input both row_anno and col_anno.

Vireo Object

Objects of type Vireo allow clustering cells by allelic ratio

	
class vireoSNP.Vireo(n_cell, n_var, n_donor, n_GT=3, learn_GT=True, learn_theta=True, ASE_mode=False, fix_beta_sum=False, beta_mu_init=None, beta_sum_init=None, ID_prob_init=None, GT_prob_init=None)

	Viroe model: Variational Inference for reconstruction of ensemble origin

The prior can be set via set_prior() before fitting the model.

	beta_mu: numpy array (1, n_GT) or (n_var, n_GT)

	Beta mean parameter of theta’s posterior

	beta_sum: numpy array (1, n_GT) or (n_var, n_GT), same as beta_mu

	Beta concetration parameter of theta’s posterior

	ID_prob: numpy array (n_cell, n_donor)

	Posterior cell assignment probability to each donor

	GT_prob: numpy array (n_var, n_donor, n_GT)

	Posterior genotype probability per variant per donor

	
__init__(n_cell, n_var, n_donor, n_GT=3, learn_GT=True, learn_theta=True, ASE_mode=False, fix_beta_sum=False, beta_mu_init=None, beta_sum_init=None, ID_prob_init=None, GT_prob_init=None)

	Initialise Vireo model

Note, multiple initializations are highly recomended to avoid local
optima.

	Parameters

	
	n_cell (int.) – Number of cells

	n_var (int.) – Number of variants

	n_donor (int.) – Number of donors

	n_GT (int.) – Number of genotype categories

	learn_GT (bool.) – Whether updating GT_prob; otherwise using the initial

	ASE_mode (bool.) – Whether setting allelic ratio theta to be variant specific

	fix_beta_sum (bool.) – Whether fixing the concetration parameter of theta’s posterior

	beta_mu_init (numpy array (1, n_GT) or (n_var, n_GT)) – Initial value of beta_mu, the mean parameter of theta

	beta_sum_init (numpy array (1, n_GT) or (n_var, n_GT), same as beta_mu) – Initial value of beta_sum, the concetration parameter of theta

	ID_prob_init (numpy array (n_cell, n_donor)) – Initial value of ID_prob, cell assignment probability to each donor

	GT_prob_init (numpy array (n_var, n_donor, n_GT)) – Initial value of GT_prob, genotype probability per variant and donor

	
fit(AD, DP, max_iter=200, min_iter=5, epsilon_conv=0.01, delay_fit_theta=0, verbose=True, n_inits=50, nproc=1)

	Fit Vireo model with coordinate ascent

	Parameters

	
	AD (scipy.sparse.csc_matrix (n_var, n_cell)) – Sparse count matrix for alternative allele

	DP (scipy.sparse.csc_matrix (n_var, n_cell)) – Sparse count matrix for depths, alternative + refeerence alleles

	max_iter (int) – Maximum number of iterations

	min_iter – Minimum number of iterations

	epsilon_conv (float) – Threshold for detecting convergence

	delay_fit_theta (int) – Number of steps to delay updating theta. This can be very useful
for common genetics when there is good prior on allelic ratio.

	verbose (bool) – Whether print out log info

	
set_initial(beta_mu_init=None, beta_sum_init=None, ID_prob_init=None, GT_prob_init=None)

	Set initial values

	
set_prior(GT_prior=None, ID_prior=None, beta_mu_prior=None, beta_sum_prior=None, min_GP=1e-05)

	Set prior for key variables: theta, GT_prob and ID_prob.
The priors are in the same shape as its according variables.

min_GP: float. Minimun genotype probability in GT_prior.

BinomMixtureVB Object

Objects of type BinomMixtureVB for clustering with binomial
mixture model

	
class vireoSNP.BinomMixtureVB(n_cell, n_var, n_donor, fix_beta_sum=False, beta_mu_init=None, beta_sum_init=None, ID_prob_init=None)

	Binomial mixture model with variational inference

The prior can be set via set_prior() before fitting the model.

	beta_mu: numpy array (n_var, n_donor)

	Beta mean parameter of theta’s posterior

	beta_sum: numpy array (n_var, n_donor)

	Beta concetration parameter of theta’s posterior

	ID_prob: numpy array (n_cell, n_donor)

	Posterior cell assignment probability to each donor

	
__init__(n_cell, n_var, n_donor, fix_beta_sum=False, beta_mu_init=None, beta_sum_init=None, ID_prob_init=None)

	Initialise Vireo model

Note, multiple initializations are highly recomended to avoid local
optima.

	Parameters

	
	n_cell (int.) – Number of cells

	n_var (int.) – Number of variants

	n_donor (int.) – Number of donors

	fix_beta_sum (bool.) – Whether fixing the concetration parameter of theta’s posterior

	beta_mu_init (numpy array (n_var, n_donor)) – Initial value of beta_mu, the mean parameter of theta

	beta_sum_init (numpy array (n_var, n_donor)) – Initial value of beta_sum, the concetration parameter of theta

	ID_prob_init (numpy array (n_cell, n_donor)) – Initial value of ID_prob, cell assignment probability to each donor

	
fit(AD, DP, n_init=10, max_iter=200, max_iter_pre=100, random_seed=None, **kwargs)

	Fit VB with multiple initializations

	Parameters

	
	AD (scipy.sparse.csc_matrix (n_var, n_cell)) – Sparse count matrix for alternative allele

	DP (scipy.sparse.csc_matrix (n_var, n_cell)) – Sparse count matrix for depths, alternative + refeerence alleles

	n_inits (int) – Number of random initialisations to use

	max_iter (int) – Maximum number of iterations for _fit_BV() in best initial

	max_iter_pre (int) – Maximum number of iterations for _fit_BV() in multiple initials

	min_iter – Minimum number of iterations for _fit_BV()

	epsilon_conv (float) – Threshold for detecting convergence for _fit_BV()

	verbose (bool) – Whether print out log info for _fit_BV()

	random_seed (None or int) – Random seed in numpy.random for multiple initializations

	
set_initial(beta_mu_init=None, beta_sum_init=None, ID_prob_init=None)

	Random initialization

	
set_prior(ID_prior=None, beta_mu_prior=None, beta_sum_prior=None)

	Set prior for key variables: theta and ID_prob.
The priors are in the same shape as its according variables.

History

Development on GitHub

	fix bug with GT_tag2 in match_VCF_samples() function

Release v0.5.8 (18/02/2023)

	fix issue with None in match() and match_SNPs() when w/ chr w/o chr have partial match

	minor optimise the codes for vireoSNP.utils.vcf_utils.parse_donor_GPb

	add a snp_gene_match() function

	fix issue in write_VCF() when there is no samples

Release v0.5.7 (24/03/2022)

	fix the issue when output_dir is not given

	add doc for read VCF files

Release v0.5.6 (07/04/2021)

	fix a bug for detecting unsupported genotyep tag

	add a wrap function to compare samples in two VCF files

	add doublet_logLikRatio in donor_ids.tsv for extra indicators of doublets

	update documentation with supporting notebook vireoSNP_clones.ipynb

	update API

Release v0.5.5 (28/03/2021)

	update notebook vireoSNP_clones.ipynb

	update API

Release v0.5.4 (28/03/2021)

	introduce log likelihood ratio for detecting ambient RNAs

	support ambient RNAs from a mixture of all donors or only two donors

	introduce multiple processes for multiple initializations

	introduce ELBO_gain for selecting variants

	For donor_ids.tsv, the doublet_prob change from sum to max

Release v0.5.3 (28/03/2021)

	support detection of ambient RNAs, alternative way for doublet detection

Release v0.5.0 (09/02/2021)

	support support numpy.ndarray and automatically change to sparse matrix

	fix the sign of KL

	fix a minor bug on –noDoublet setting

	add –cellRange to subset the input cells for less memory

	update anno_heat() plotting

	add get_confusion() for results comparison and plotting

Release v0.4.2 (14/11/2020)

	fix the donor names when N < donors_in_GT

	change the suggestion from cellSNP python to C version (cellsnp-lite)

Release v0.4.1 (18/05/2020)

	add likelihood ratio test the differential donor abundance in bulk RNA-seq
data

	set the interpolation=’none’ for plt.imshow

Release v0.4.0 (19/04/2020)

	add vireoBulk for demultiplexing in bulk RNA-seq data

Release v0.3.2 (10/04/2020)

	support donor variant match between with and without “chr” prefix

Release v0.3.1 (25/03/2020)

	replace greed_match to optimal_match for aligning donors via genotype

Release v0.3.0 (23/03/2020)

	Rewrite the Vireo in the object-oriented way for easier upgrading and adding
new features

	Now support fix the dispersion of the theta posterior distribution

	Change delay_fit_theta as an augument. It’s often useful for donor
deconvolution, but may not ideal for clonal inference, where theta can be very
different from our expectation due to ASE or copy numbers

Release v0.2.3 (22/03/2020)

	Fix a minor bug in donor_select()

Release v0.2.2 (21/03/2020)

	Change GP_prob’s shape from (n_var, n_GT, n_donor) to (n_var, n_donor, n_GT)

	Restructure the codes for further upgrading

	Minor fix the GT_plot xlim and ylim

Release v0.2.1 (30/01/2020)

	Fix a bug when the donors in the input GT is smaller than donors in the pooled
scRNA-seq. The sample id is now corrected.

Release v0.2.0 (28/01/2020)

	Support SNP specific allelic ratio, namely theta parameters. Note, SNP based
ASE mode requires a much stronger prior on theta to avoid overfitting, as each
variant has very low number of reads.

	Change the default extraDonor to 0.

	Provide examples/vireoSNP_usage.ipynb for using vireoSNP as a Python module
for general cell clustering based on allelic ratio.

Release v0.1.8 (29/10/2019)

	Further fix the bug when variants in donor genotype are not in cell vcf file

Release v0.1.7 (05/10/2019)

	Support donor genotype vcf file with different FORMAT for different variants

Release v0.1.6 (05/10/2019)

	Fix a bug when variants in donor genotype are not in cell vcf file

Release v0.1.5 (28/09/2019)

	Support genotype barcode generation

Release v0.1.4 (22/09/2019)

	Support that the case that input GT is larger than wanted n_donor

	Clarify the structure in vireo_flock: 1) warm-up for multiple initials or
extra donors; 2) pre-step to subset or fill up the genotype prior; 3) the main
run.

	Provide more options in the warm-up step to search donors from extra clusters.
Before, it only uses the size of the donor. Now, the genotype distance can be
used to search the K donors with furthest genotype distance.

Release v0.1.3 (30/08/2019)

	Support vartrix sparse matrices as input

	Change –amplifyK to –extraDonor for extra donors in initial search

	Fixed the bug for –noDoublet

	Fixed a bug for unassigned

	Minor update of figure output

	Updated the submoduals for easier import

Release v0.1.2 (15/07/2019)

	Support sparse matrices as input (for cellSNP directory with -O)

	Plot the distance between genotype probability between estimated samples

	Upgrade the manual, including the usage of simulation (readme in the
simulation folder of GitHub repo)

Release v0.1.1 (30/06/2019)

	A completed version for all planned features

	Donor deconvolution with supporting multiple modes:
1) without genotype
2) with genotype for all samples
3) with genotype for part of the samples
4) with genotype but not confident

	Manual for installation, usage, and preprocessing

	Release test data sets

	vireoSNP is available on PyPI, try it pip install vireoSNP

Release v0.1.0 (24/06/2019)

	reimplementation of vireo in Python (orignal in cardelino R package)

	Initial release with limited features

Mito Clones

Using vireo for clonal reconstruction - mitochondrial mutations

Date: 15/03/2022

The mitochondrial mutations data set is extracted from Ludwig et al, Cell, 2019 [https://doi.org/10.1016/j.cell.2019.01.022], the 9 variants used here are from Supp Fig. 2F (and main Fig. 2F).

Generally, you can use cellSNP-lite [https://github.com/single-cell-genetics/cellsnp-lite] to genotype mitochondrial genomes and call clonal informed mtDNA variants with MQuad [https://github.com/single-cell-genetics/MQuad].

With the filtered variants at hand, we can use the vireoSNP.BinomMixtureVB class to reconstruct the clonality.

[1]:

import vireoSNP
import numpy as np
from scipy import sparse
from scipy.io import mmread
import matplotlib.pyplot as plt

print(vireoSNP.__version__)

0.5.6

[2]:

np.set_printoptions(formatter={'float': lambda x: format(x, '.5f')})

[3]:

AD = mmread("../data/mitoDNA/cellSNP.tag.AD.mtx").tocsc()
DP = mmread("../data/mitoDNA/cellSNP.tag.DP.mtx").tocsc()
mtSNP_ids = np.genfromtxt('../data/mitoDNA/passed_variant_names.txt', dtype='str')

Identify clones

[4]:

from vireoSNP import BinomMixtureVB

[5]:

_model = BinomMixtureVB(n_var=AD.shape[0], n_cell=AD.shape[1], n_donor=3)
_model.fit(AD, DP, min_iter=30, n_init=50)
print(_model.ELBO_iters[-1])

-190779.74335041404

Check the model fitting

[6]:

fig = plt.figure(figsize=(11, 4))
plt.subplot(1, 2, 1)
plt.hist(_model.ELBO_inits)
plt.ylabel("Frequency")
plt.xlabel("ELBO in multiple initializations")

plt.subplot(1, 2, 2)
plt.plot(_model.ELBO_iters)
plt.xlabel("Iterations")
plt.ylabel("ELBO in a single initialization")

plt.tight_layout()
plt.show()

[image: _images/vireoSNP_clones_11_0.png]

Visualize assignment probability and allele frequency

[7]:

In mitochondrial, allele frequency is highly informative between 0.01 to 0.1,
so we rescale the colour to give more spectrum for this region.
You can design/choose your own colors from here:
https://matplotlib.org/stable/tutorials/colors/colormaps.html

from matplotlib import cm
from matplotlib.colors import ListedColormap, LinearSegmentedColormap

raw_col = cm.get_cmap('pink_r', 200)
new_col = np.vstack((raw_col(np.linspace(0, 0.7, 10)),
 raw_col(np.linspace(0.7, 1, 90))))
segpink = ListedColormap(new_col, name='segpink')

[8]:

from vireoSNP.plot import heat_matrix

fig = plt.figure(figsize=(7, 4), dpi=100)
plt.subplot(1, 2, 1)
im = heat_matrix(_model.ID_prob, cmap="Blues", alpha=0.8,
 display_value=False, row_sort=True)
plt.colorbar(im, fraction=0.046, pad=0.04)
plt.title("Assignment probability")
plt.xlabel("Clone")
plt.ylabel("%d cells" %(_model.n_cell))
plt.xticks(range(_model.n_donor))

plt.subplot(1, 2, 2)
im = heat_matrix(_model.beta_mu, cmap=segpink, alpha=0.8,
 display_value=False, row_sort=True)
plt.colorbar(im, fraction=0.046, pad=0.04)
plt.title("Mean allelic ratio")
plt.xlabel("Clone")
plt.ylabel("%d SNPs" %(_model.n_var))
plt.xticks(range(_model.n_donor))

plt.tight_layout()
plt.show()
plt.savefig("you_favorate_path with png or pdf")

[image: _images/vireoSNP_clones_14_0.png]

Diagnosis

We are using multiple initializations via n_init and choose the one with highest ELBO. However, this doesn’t guarantee to be the global optima. To double check it, we can run the same scripts multiple time (without fixed random seed), and check if the same (best) ELBO is found.

If yes, it is likely to be the global optima, otherwise, we need increase n_init, e.g., 300 for more search.

[9]:

n_init = 50
for i in range(3):
 _model = BinomMixtureVB(n_var=AD.shape[0], n_cell=AD.shape[1], n_donor=3)
 _model.fit(AD, DP, min_iter=30, n_init=n_init)
 print("rerun %d:" %i, _model.ELBO_iters[-1])

rerun 0: -190779.74335041404
rerun 1: -190779.74335041404
rerun 2: -190779.74335041404

[]:

It is generally difficult to identify the number of clones, which is a balance between subclone resolution and analysis reliability. More clones maybe preferred, but there could be higher risk that the subclones are not genuine but rather technical noise.

Here, we could use ELBO for different number of clones as an indictor for model selection. However, this is still imperfect. One empirical suggestion is to choose the n_clones when ELBO stops increasing dramatically, for example in the case below, we will pick 3 clones.

[10]:

n_init = 50
n_clone_list = np.arange(2, 6)

_ELBO_mat = []
for k in n_clone_list:
 _model = BinomMixtureVB(n_var=AD.shape[0], n_cell=AD.shape[1], n_donor=k)
 _model.fit(AD, DP, min_iter=30, n_init=n_init)
 _ELBO_mat.append(_model.ELBO_inits)

[11]:

plt.plot(np.arange(1, len(n_clone_list)+1), np.max(_ELBO_mat, axis=1))
plt.boxplot(_ELBO_mat)
plt.xticks(np.arange(1, len(n_clone_list)+1), n_clone_list)
plt.ylabel("ELBO")
plt.xlabel("n_clones")
plt.show()

[image: _images/vireoSNP_clones_21_0.png]

[]:

Visualization

If you want to visualise the raw allele frequency with annotation of cells, you may consider seaborn.clustermap [https://seaborn.pydata.org/generated/seaborn.clustermap.html]. We also wrap this function here as vireoSNP.plot.anno_heat for quick use.

[12]:

mtSNP_ids = ['mt_variant%d' %x for x in range(AD.shape[0])]
cell_label = np.array(['clone1'] * 27 + ['clone2'] * 27 + ['clone3'] * 27)
id_uniq = ['clone1', 'clone2', 'clone3']

[13]:

vireoSNP.plot.anno_heat(AD/DP, col_anno=cell_label, col_order_ids=id_uniq,
 cmap=segpink, yticklabels=mtSNP_ids)

[13]:

<seaborn.matrix.ClusterGrid at 0x7fd475067eb0>

[image: _images/vireoSNP_clones_26_1.png]

[]:

 Python Module Index

 v

 		 	

 		
 v	

 	
 	
 vireoSNP	

Index

 _
 | A
 | B
 | F
 | H
 | L
 | M
 | P
 | R
 | S
 | V

_

 	
 	__init__() (vireoSNP.BinomMixtureVB method)

 	(vireoSNP.Vireo method)

A

 	
 	anno_heat() (in module vireoSNP.plot)

B

 	
 	BinomMixtureVB (class in vireoSNP)

F

 	
 	fit() (vireoSNP.BinomMixtureVB method)

 	(vireoSNP.Vireo method)

H

 	
 	heat_matrix() (in module vireoSNP.plot)

L

 	
 	load_VCF() (in module vireoSNP.vcf)

M

 	
 	match_VCF_samples() (in module vireoSNP.vcf)

P

 	
 	parse_donor_GPb() (in module vireoSNP.vcf)

R

 	
 	read_cellSNP() (in module vireoSNP)

 	
 	read_vartrix() (in module vireoSNP)

S

 	
 	set_initial() (vireoSNP.BinomMixtureVB method)

 	(vireoSNP.Vireo method)

 	
 	set_prior() (vireoSNP.BinomMixtureVB method)

 	(vireoSNP.Vireo method)

V

 	
 	Vireo (class in vireoSNP)

 	
 	vireoSNP (module)

 _static/plus.png

_images/API-1.png
042

035

040

000

054

030

042

015

009

020

020

009

053

019

004

_images/GT_barcodes.png
5 140439524 G A 2 1 1 0

14 71419817 A G4 1 1 2 1

#21 #11 #12 #01
donor0 donorl donor2 donor3

_static/up-pressed.png

_static/up.png

_images/vireoSNP_clones_11_0.png
Frequency
]

B

230000

220000 210000 200000
ELBO in multiple initializations

190000

200000

220000

240000

260000

280000

EY
Iterations

©

_images/vireoSNP_clones_14_0.png
81 cells

10

20

60

70

80

Assignment probability

Mean allelic ratio

Clone

10

0.8

0.6

0.4

02

0.0

9 SNPs

Clone

035
030
025
0.20
015
0.10

0.05

_images/vireoSNP_clones_21_0.png
ELBO

190000

200000

210000

220000

230000

240000

250000

_images/vireoSNP_clones_26_1.png
= donel == donez W done3

- mt_variant0

II || | - mt_variant1

- mt_variant2

- mt_variant3

me_variants

- mt_variant7

05

04

03

02

01

00

API-1.png
042

035

040

000

054

030

042

015

009

020

020

009

053

019

004

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Home

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

